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Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let ϕ : R3 Ñ R be a continuous function. Assume that ϕ is collision invariant, i.e.

ϕ
`

v1
˘

` ϕ
`

v1˚
˘

“ ϕ pvq ` ϕ pv˚q (1)

for all v, v˚ P R3, ω P S2, and with v1 and v1˚ defined as:

"

v1 “ v ` pv˚ ´ vq ¨ ω ω,
v1˚ “ v˚ ´ pv˚ ´ vq ¨ ω ω.

(2)

• Assume additionally that ϕ vanishes on p0, 0, 0q, p1, 0, 0q, p0, 1, 0q, p0, 0, 1q and p´1, 0, 0q.
Prove that ϕ is zero on Z3.

• Under the same assumption of the previous point, prove that actually ϕ is zero on
R3.

Hint: Denote a “ p1{2, 1{2, 0q, b “ p1{2,´1{2, 0q, c “ p´1{2,´1{2, 0q and d “
p´1{2, 1{2, 0q, what can be said about ϕ paq ` ϕ pbq, ϕ pbq ` ϕ pcq, ϕ pcq ` ϕ pdq,
ϕ pdq ` ϕ paq? What about ϕ paq ` ϕ pcq? Iterate this idea and use continuity to
conclude.

• Consider now a generic continous ϕ which is collision invariant. Use the previous
point to prove that there exist a, c P R and b P R3 such that

ϕ pvq “ a |v|2 ` b ¨ v ` c, (3)

for any v P R3.

Remark. Notice that despite the similarities with the result presented in class, the final
result is here achieved under much less regularity assumptions.

Proof. Let e1 :“ p1, 0, 0q, e2 :“ p0, 1, 0q and e3 :“ p0, 0, 3q. Initially assume that ϕ : R3 Ñ

R, is collision invariant and vanishes on 0, e1, e2, e3, ´e1.

Consider the set Λ :“
 

v P R3| ϕ pvq “ 0
(

. By hypotheses 0, e1, e2, e3, ´e1 P Λ. In the
first part we prove that Z3 Ď Λ.

Step 1: Recall that we saw in class that the middle point between v and v˚ and the
middle point between v1 and v1˚ coincide. We will indicate that point as vM in the
following of the proof. Moreover we have that |v ´ v˚| “ |v

1 ´ v1˚|. As we discussed
in class, any value of ω is associated to one and only one pair v1, v1˚ such that the
middle point coincides with vM and |v ´ v˚| “ |v

1 ´ v1˚|. We will use this geometric
characterization to complete our proof.
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Step 2: We first prove that e1`e2 P Λ. Indeed we have that if v “ e1, v˚ “ e2, v
1 “ 0 and

v1˚ “ e1`e2 we have v`v˚ “ e1`e2 “ v1`v1˚; on the other hand |v ´ v˚| “ |e1 ´ e2| “?
2 “ |e1 ` e2| “ |v

1 ´ v1˚|. This means that ϕ pv1˚q “ ϕ pvq `ϕ pv˚q ´ϕ pv
1q “ 0 and

therefore e1 ` e2 P Λ. More in general, if we prove that v, v˚, v
1 P Λ, then v1˚ P Λ.

Step 3: Next, consider v “ ´e1, v˚ “ e1, v
1 “ e2 and v1˚ “ ´e2. We get v ` v˚ “ 0 and

v1`v1˚ “ 0, while at the same time |v ´ v˚| “ 2 “ |v1 ´ v1˚|. Therefore v1˚ “ ´e2 P Λ.

Analogously v “ e1, v˚ “ ´e2, v
1 “ 0 and v1˚ “ e1 ´ e2. We get v ` v˚ “ e1 ´ e2

and v1 ` v1˚ “ e1 ´ e2, while at the same time |v ´ v˚| “
?

2 “ |v1 ´ v1˚|. Therefore
v1˚ “ e1 ´ e2 P Λ.

Step 4: Given that the crucial ideas are the one introduced in the previous points, we just
sketch the next steps. From the fact that ´e1, e1, e1 ´ e2 P Λ then ´e1 ´ e2 P Λ;
from the fact that ´e1, e1, e1 ` e2 P Λ then ´e1 ` e2 P Λ.

Now, using iteratively that from the fact that pn´ 1q e1, ne1`e2, ne1´e2 P Λ we get
pn` 1q e1 P Λ and that from the fact that pn´ 1q e1, pn´ 1q e1˘ e2, pn` 1q e1 P Λ
we get pn` 1q e1 ˘ e2 P Λ we get tne1 `me2| n P N, m P t0, ˘1uu Ď Λ.

Proceeding similarly in all directions this implies that tne1 `me2| n, m P Zu Ď Λ.

Step 5: Consider now v “ e1, v˚ “ ´e1, v
1 “ e3 and v1˚ “ ´e3. We get v`v˚ “ 0 “ v1`v1˚

and |v ´ v˚| “ 2 “ |v1 ´ v1˚|. Therefore v1˚ “ ´e3 P Λ.

Proceeding as before we first deduce that e3 ˘ e1, ´e3 ˘ e1, e3 ˘ e2, ´e3 ˘ e2 P Λ.
This implies that tnv1 `mv2| n, m P Z, v1, v2 P te1, e2, e3uu.

Step 6: Finally from the previous step we deduce that Z3 Ď Λ.

For the next part, consider a, b, c, d as defined in the hint. Consider v “ a “ 1
2e1 `

1
2e2,

v˚ “ b “ 1
2e1 ´

1
2e2, v

1 “ 0, v1˚ “ e1; we then get v ` v˚ “ e1 “ v1 ` v1˚ and that
|v ´ v˚| “ 1 “ |v1 ´ v1˚|. This implies that ϕ paq ` ϕ pbq “ ϕ p0q ` ϕ pe1q “ 0. As a
consequence ϕ paq “ ´ϕ pbq. Proceeding analogously we get ϕ pbq “ ´ϕ pcq “ ϕ pdq

Moreover, consider v “ a, v˚ “ c “ ´1
2e1 ´

1
2e2, v

1 “ b and v1˚ “ ´
1
2e1 `

1
2e2. We get v `

v˚ “ 0 “ v1`v1˚ and that |v ´ v˚| “
?

2 “ |v1 ´ v1˚|. As a consequence we get ϕ paq`ϕ pcq “
ϕ pbq ` ϕ pdq and therefore ϕ paq “ ϕ pbq “ ϕ pcq “ ϕ pdq “ 0. This allows us to conclude
that from the fact that tne1 `me2| n, m P Zu Ď Λ we get

 

ne1 `me2| n, m P 1
2Z

(

Ď Λ.
Iterating this we get that

 

ne1 `me2| Dk P N, n, m P 1
2k
Z
(

Ď Λ. Finally by continuity we
get that txe1 ` ye2| x, y P Ru Ď Λ proceeding similarly in all directions we can conclude
that Λ “ R3 and therefore ϕ “ 0.

For the final point, consider a generic continuous collision invariant function ϕ and define
the function rϕ pvq :“ a |v|2 ` b ¨ v ` c such that rϕ “ ϕ on the points 0, ˘e1, e2, e3. This
correspond to five equations with five unknown; there exist then a, c P R, b P R3 such
that ϕ´ rϕ vanishes on 0, ˘e1, e2, e3, which is a continuous collision invariant. From the
previous points now ϕ´ rϕ “ 0 and this implies the conclusion.
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Exercise 2

Let pX,Σ, µq be a finite measure space. Let f : X Ñ X a measure-preserving transforma-
tion, i.e., a mapping such that for any A P Σ we have µ

`

f´1 pAq
˘

“ µ pAq. For any x P X
and A P Σ, we say that x is recurrent with respect to A if

ˇ

ˇ

 

k P N| fk pxq P A
(ˇ

ˇ “ `8,
where fk`1 pxq :“ f

`

fk pxq
˘

.

Prove the Poincaré recurrence Theorem, i.e., prove that for any measurable set A P Σ
almost every point of A is recurrent with respect to A.

Discuss then how this would seem to contradict the H-theorem (this is the so-called
Zermelo’s Paradox).

Hint: Consider the family of sets Up :“
Ť

kěp f
´k pAq. Can we express the set of non-

recurrent points in term of tUpupPN?

Proof. As in the hint define for any p P N the set Up :“
Ť

kěp f
´k pAq; clearly f´1 pUpq “

Up`1 and therefore µ pUpq “ µ pU0q ě µ pAq. Moreover we get Up “ f´p pU0q. Consider
now the set of all the points in A which are not recurrent with respect to A; we get

tx P A| x is not recurrent w.r.t. Au “ tx P A| |tn P N| fn pxq P Au| ă `8u (4)

“ Az tx P A| |tn P N| fn pxq P Au| “ `8u (5)

“ Az

˜

č

pPN
pAX Upq

¸

“ Az
č

pPN
Up (6)

“
ď

pPN
pAzUpq . (7)

From the definition we get A Ď U0 and therefore AzUp Ď U0zUp “ U0zf
´p pU0q. Given

that f´p pU0q Ď U0 we get

0 ď µ pAzUpq ď µ
`

U0zf
´p pU0q

˘

“ µ pU0q ´ µ
`

f´p pU0q
˘

“ µ pU0q ´ µ pU0q “ 0. (8)

Therefore we get µ pAzUpq which implies µ ptx P A| x is not recurrent w.r.t. Auq “ 0.

Exercise 3

We will now study a toy model, useful to understand the Zermelo’s Paradox.

Consider the following setting. We have N points on a ring, with N a large integer number.
At every point there is a ball, that can be either white or black. Between every couple of
points there is an edge that can contain or not contain a marker. We consider that the
system evolves in discrete times according to the following rule: at each step, the balls
rotate of one position (the ball in position 1 goes to position 2, 2 to 3 and so on, and
finally the ball in position N goes to position 1). If the ball encounters a marker on the
edge, it changes its color.
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• Let W ptq the total number of white balls and B ptq the total number of black balls
at time t. Let w ptq (and b ptq respectively) the number of white (and respectively
black) balls that will cross a marker at the next step.

Let ∆ ptq :“ B ptq ´W ptq. Describe ∆ pt` 1q in terms of ∆ ptq.

Let in addition µ be the fraction of markers over the total number of edges. Assume
moreover that wptq

W ptq “
bptq
Bptq “ µ (this corresponds to the Stosszahlansatz). Find an

explicit formula for ∆ ptq in terms of ∆ p0q and µ.

• Denote with Xjptq the color of the ball at position j at time t, where Xjptq “ 1 if
the ball is black and Xjptq “ ´1 if the ball is white. Denote with mj the fact that a
marker is or is not on the edge between position j and position j` 1, where mj “ 1
if there is no marker (and the ball does not change colour) while mj “ ´1 if there
is a marker (and the ball does change colour).

Describe ∆ ptq in terms of tXj p0qu
N
j“1 and tmju

N
j“1.

• Suppose now that every edge has a probability 0 ď µ ď 1 of having a marker. Denote
with x¨y the expectation over all the possible configurations of markers, meaning that
if M is the set of all the possible configurations and we denote with m “ tmju

N
j“1

one such configuration, for f : M Ñ R, we define

xfy :“
1

|M |

ÿ

mPM

f pmq . (9)

Given that for any t ą 0 the value ∆ ptq depends on the configuration of markers
on the edges, we can calculate its expectation.

Prove that for any t ă N , x∆ ptqy “ p1´ 2µqt ∆ p0q.

• Discuss the link between the quantity we just obtained and the H-theorem for large
values of N .

• Notice that the evolution of the system is reversible, that ∆ ptq is periodic and find
the period. Discuss how this solves the Zermelo’s Paradox.

Proof. First of all, we get that the number of black balls at time t ` 1 is given adding
the number of white balls that cross a marker to become black and substracting the
number of black balls that cross a marker to become white to the number of black balls
at time t, i.e., B pt` 1q “ B ptq ´ b ptq ` w ptq. Similarly, for the white balls we get
W pt` 1q “W ptq ´ w ptq ` b ptq. Therefore we get

∆ pt` 1q “ B pt` 1q ´W pt` 1q “ B ptq ´ b ptq ` w ptq ´ pW ptq ´ w ptq ` b ptqq (10)

“ ∆ ptq ´ 2 pb ptq ´ w ptqq . (11)

If we now assume that wptq
W ptq “

bptq
Bptq “ µ we get

∆ pt` 1q “ ∆ ptq ´ 2 pb ptq ´ w ptqq “ ∆ ptq ´ 2µ pB ptq ´W ptqq “ p1´ 2µq∆ ptq . (12)

Iterating the previous formula we get ∆ ptq “ p1´ 2µqt ∆ p0q.
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Now, define Xj ptq as in the text. We get that ∆ ptq “
řN

j“1Xj ptq. Also, by definition of

tXj ptqu
N
j“1 and tmju

N
j“1 we get Xj`1 pt` 1q “ mjXj ptq for all j ą 0, while X1 pt` 1q “

mNXN ptq. Extend now the definition of mj and Xj for any j P Z periodically. In this
way we get that iterating the formula for Xj pt` 1q we get

Xj ptq “

¨

˝

j´1
ź

k“j´t

mk

˛

‚Xj´t p0q “

˜

t
ź

k“1

mj´k

¸

Xj´t p0q . (13)

As a consequence, this implies

∆ ptq “
N
ÿ

j“1

˜

t
ź

k“1

mj´k

¸

Xj´t p0q “
N
ÿ

j“1

˜

t
ź

k“1

mj`t´k

¸

Xj p0q . (14)

First notice that Xj p0q does not depend on tmju
N
j“1, therefore

x∆ ptqy “
N
ÿ

j“1

x

˜

t
ź

k“1

mj`t´k

¸

yXj p0q . (15)

We can now explicitly calculate the last term; indeed first of all given that we are looking
at an average, the product depends only on the fact that we consider t different markers,
not which one we consider, so we immediately get

x

t
ź

k“1

mj`t´ky “ x

t
ź

k“1

mky. (16)

Moreover, the product is 1 if we have an even number of markers, ´1 if we have an
odd one. Therefore, if we indicate with pl ptq the probability of finding l markers on t
consecutive edges, we get

x

t
ź

k“1

mky “

t
ÿ

l“0

p´1ql pl ptq . (17)

Now we have that an edge has probability µ of having a marker, hence if t ă N

pl ptq “

ˆ

t

l

˙

µl p1´ µqt´l . (18)

We can then conclude

x

t
ź

k“1

mj`t´ky “

t
ÿ

l“0

p´1ql pl ptq “
t
ÿ

l“0

p´1ql
ˆ

t

l

˙

µl p1´ µqt´l “ p1´ 2µqt . (19)

We finally get

x∆ ptqy “
N
ÿ

j“1

x

˜

t
ź

k“1

mj`t´k

¸

yXj p0q “ p1´ 2µqt ∆ p0q . (20)
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It is easy to see that ∆ ptq is periodic, indeed ∆ p2Nq “ ∆ p0q (every ball encounters every
marker twice). Furthermore, 2N is the period if the number of marker is odd, while N is
if the number of markers is even.

6


