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Exercise 1

Let ¢ : R? - R be a continuous function. Assume that ¢ is collision invariant, i.e.

@ (V) + @ (vi) = 0 () + @ (vs) (1)

for all v, v, € R3, we S?, and with v' and v/, defined as:

(2)

V=04 (v — ) ww,
Ve = vs — (Vs — V) W W,

e Assume additionally that ¢ vanishes on (0, 0, 0), (1,0,0), (0,1,0), (0,0,1) and (—1,0,0).
Prove that ¢ is zero on Z3.

e Under the same assumption of the previous point, prove that actually ¢ is zero on
R3.
Hint: Denote a = (1/2,1/2,0), b = (1/2,—-1/2,0), ¢ = (—1/2,—1/2,0) and d =
(—1/2,1/2,0), what can be said about ¢ (a) + ¢ (b), ¢ (b) + ¢ (c), ¢ (c) + ¢ (d),
¢ (d) + ¢ (a)? What about ¢ (a) + ¢ (c)? Iterate this idea and use continuity to
conclude.

e Consider now a generic continous ¢ which is collision invariant. Use the previous
point to prove that there exist a, ¢ € R and b € R? such that

e)=al+b-v+e, (3)
for any v € R3.

Remark. Notice that despite the similarities with the result presented in class, the final
result is here achieved under much less regularity assumptions.

Proof. Let e1 := (1,0,0), ez := (0,1,0) and e3 := (0,0, 3). Initially assume that ¢ : R® —
R, is collision invariant and vanishes on 0, ey, e2, e3, —eq.

Consider the set A := {v eR3| p(v) = 0}. By hypotheses 0, e, e2, e3, —e; € A. In the
first part we prove that Z3 < A.

Step 1: Recall that we saw in class that the middle point between v and v, and the
middle point between v" and v} coincide. We will indicate that point as vys in the

following of the proof. Moreover we have that |[v — v.| = [v/ — v |. As we discussed
in class, any value of w is associated to one and only one pair v/, v} such that the
middle point coincides with vy and |v — vy| = [/ — v} |. We will use this geometric

characterization to complete our proof.



Step 2: We first prove that e; +eo € A. Indeed we have that if v = e, vy = €2, v’ = 0 and
v, = e1+eg we have v+v, = e1+eg = v'+0); on the other hand |[v — vy| = |e1 — €3] =
V2 = |e1 + ea] = [v' — v|. This means that ¢ (v},) = ¢ (v) + ¢ (v4) — ¢ (v) = 0 and
therefore e; + ez € A. More in general, if we prove that v, vy, v' € A, then v} € A.

Step 3: Next, consider v = —ej, vy = e1, v/ = ey and v, = —ey. We get v + v, = 0 and
v' +v), = 0, while at the same time |v — v| = 2 = [v/ — v} |. Therefore v, = —eg € A.
Analogously v = e1, vy = —eg, v/ = 0 and v}, = e; — ea. We get v + vy = €1 — €9

and v’ + v, = e] — eg, while at the same time |v — vi| = v/2 = |[v/ — v} |. Therefore
vl =e1 —eg €A

Step 4: Given that the crucial ideas are the one introduced in the previous points, we just
sketch the next steps. From the fact that —ej, e, e1 —eg € A then —e; —eg € A;
from the fact that —eq, e, e1 + e € A then —ej + €9 € A.

Now, using iteratively that from the fact that (n — 1) e1, nej+ea, ne;—es € A we get
(n+1)e; € A and that from the fact that (n —1)e;, (n—1)e; tea, (n+1)e; € A
we get (n+ 1) e; + ea € A we get {ne; + mea| ne N, me {0, £1}} < A.

Proceeding similarly in all directions this implies that {ne; + mea| n, m € Z} < A.

Step 5: Consider now v = e1, v, = —e1, v/ = egand v, = —e3. We get v+v, = 0 = v/ +0),
and |v — vg| = 2 = |v — v}|. Therefore v}, = —e3 € A.

Proceeding as before we first deduce that es + e1, —e3 +e1, e3 +ea, —eg+eq € A.
This implies that {nvy + muve| n, m € Z, vy,vs € {e1, €2, es}}.

Step 6: Finally from the previous step we deduce that Z3 < A.

For the next part, consider a, b, ¢, d as defined in the hint. Consider v = a = %61 + %62,
vy = b = %el — %62, v/ = 0, v, = ey; we then get v + vy = e; = v/ + v, and that
[v—vi| = 1 = |v/ —vf|. This implies that ¢ (a) + ¢ (b) = ¢ (0) + ¢(e1) = 0. As a
consequence ¢ (a) = —¢ (b). Proceeding analogously we get ¢ (b) = —¢ (¢) = ¢ (d)

Moreover, consider v = a, vy = ¢ = —%el — %62, v/ =band v} = —%61 + %62. We get v +
vy = 0 = v/ 40} and that |[v — vs| = V2 = [v/ — v}|. As a consequence we get ¢ (a)+¢p (c) =
¢ (b) + ¢ (d) and therefore ¢ (a) = ¢ (b) = ¢ (¢) = ¢ (d) = 0. This allows us to conclude
that from the fact that {ne; + mes| n, m e Z} € A we get {ne; + mes| n, me 3Z} < A.
Iterating this we get that {nel +mey| 3dkeN, n, me Z%Z} c A. Finally by continuity we
get that {xe; + yes| x, y € R} € A proceeding similarly in all directions we can conclude
that A = R3 and therefore ¢ = 0.

For the final point, consider a generic continuous collision invariant function ¢ and define
the function @ (v) := a|v|* + b- v + ¢ such that & = ¢ on the points 0, +ej, eo, es. This
correspond to five equations with five unknown; there exist then a, ¢ € R, b € R? such
that ¢ — @ vanishes on 0, +ej, e, e, which is a continuous collision invariant. From the
previous points now ¢ — @ = 0 and this implies the conclusion.

O



Exercise 2

Let (X, X, 1) be a finite measure space. Let f : X — X a measure-preserving transforma-
tion, i.e., a mapping such that for any A € ¥ we have p (f~! (4)) = p(A). For any z € X
and A € ¥, we say that z is recurrent with respect to A if [{k € N| f*(2) € A}| = +oo,

where f**1 (z) := f (f* (2)).

Prove the Poincaré recurrence Theorem, i.e., prove that for any measurable set A € X
almost every point of A is recurrent with respect to A.

Discuss then how this would seem to contradict the H-theorem (this is the so-called
Zermelo’s Paradox).

Hint: Consider the family of sets U, := Uy, f~%(A). Can we express the set of non-

recurrent points in term of {Up} ?

Proof. As in the hint define for any p € N the set U, := (>, f78(A); clearly f~1(U,) =
Up+1 and therefore p (U,) = 1 (Up) = p(A). Moreover we get U, = f~P (Up). Consider
now the set of all the points in A which are not recurrent with respect to A; we get

{z € A| z is not recurrent w.r.t. A} = {x € A| [{n e N| f"(x) € A}| < 400} (4)
= A\{ze Al [{neN| f"(z) e A}| = +o0}  (5)

=A\(ﬂ<AmUp>> =AU, (6)

peN peN

- J @, (7)

peN

From the definition we get A < Uj and therefore A\U, < Up\U, = Up\f~? (Up). Given
that 7P (Up) < Uy we get

0< p(A\T)) < o (Uo\f P (U0)) = 1 (Uo) — o (£ (U0)) = (V) = s (o) = 0. (8)

Therefore we get p1 (A\U,) which implies p ({z € A| x is not recurrent w.r.t. A}) = 0.

Exercise 3

We will now study a toy model, useful to understand the Zermelo’s Paradox.

Consider the following setting. We have N points on a ring, with N a large integer number.
At every point there is a ball, that can be either white or black. Between every couple of
points there is an edge that can contain or not contain a marker. We consider that the
system evolves in discrete times according to the following rule: at each step, the balls
rotate of one position (the ball in position 1 goes to position 2, 2 to 3 and so on, and
finally the ball in position N goes to position 1). If the ball encounters a marker on the
edge, it changes its color.



e Let W (t) the total number of white balls and B (¢) the total number of black balls
at time ¢. Let w (¢) (and b (t) respectively) the number of white (and respectively
black) balls that will cross a marker at the next step.

Let A(t) := B (t) — W (t). Describe A (¢t + 1) in terms of A ().

Let in addition u be the fraction of markers over the total number of edges. Assume

moreover that % = % = 4 (this corresponds to the Stosszahlansatz). Find an

explicit formula for A (¢) in terms of A (0) and pu.

e Denote with X(t) the color of the ball at position j at time ¢, where X;(t) = 1 if
the ball is black and X () = —1 if the ball is white. Denote with m; the fact that a
marker is or is not on the edge between position j and position j + 1, where m; = 1
if there is no marker (and the ball does not change colour) while m; = —1 if there
is a marker (and the ball does change colour).

Describe A (t) in terms of {X; (O)};V:1 and {mj}j.v:l.

e Suppose now that every edge has a probability 0 < p < 1 of having a marker. Denote
with (-) the expectation over all the possible configurations of markers, meaning that
if M is the set of all the possible configurations and we denote with m = {m; }jV: n
one such configuration, for f: M — R, we define

1
(fy = ] > fm). (9)

meM

Given that for any ¢ > 0 the value A (¢) depends on the configuration of markers
on the edges, we can calculate its expectation.

Prove that for any t < N, (A (t)) = (1 — 2u)" A (0).

e Discuss the link between the quantity we just obtained and the H-theorem for large
values of N.

e Notice that the evolution of the system is reversible, that A (¢) is periodic and find
the period. Discuss how this solves the Zermelo’s Paradox.

Proof. First of all, we get that the number of black balls at time ¢ + 1 is given adding
the number of white balls that cross a marker to become black and substracting the
number of black balls that cross a marker to become white to the number of black balls
at time t, i.e., B(t+1) = B(t) — b(t) + w(t). Similarly, for the white balls we get
W(t+1)=W(t)—w(t) + b(t). Therefore we get

At+1)=B{t+1)—-W({t+1)=B(@t)—b(t)+w(t)—(W({)—w(t)+0b(t) (10)

=A{t)—2(b(t)—w(t)). (11)
If we now assume that % = % = 1 we get

At+1) = A1) —20(t) —w(t) = A1) —2u(BE) =W () = 1 —20) A (). (12)

Iterating the previous formula we get A (t) = (1 — 2u)" A (0).



Now, define X (¢) as in the text. We get that A (t) = Z;V:1 X (t). Also, by definition of
{X; (1)}2, and {m;}2 | we get Xy (t+ 1) = m;X; (¢) for all j > 0, while X, (¢ +1) =
myXn (). Extend now the definition of m; and X; for any j € Z periodically. In this
way we get that iterating the formula for X; (t + 1) we get

j—1 ¢
Xj (t) = H mg Xj_t (0) = <H mjk> Xj_t (0) . (13)
k=j—t k=1
As a consequence, this implies
N [/t N ¢
Aty =] (H mj_k) X;4(0) = )] <H mj+t_k> X; (0). (14)
j=1 \k=1 j=1 \k=1

First notice that X (0) does not depend on {m; }j.vzl, therefore

N
Aty =K

j=1

( mj+tk> )X (0). (15)
k=1

We can now explicitly calculate the last term; indeed first of all given that we are looking
at an average, the product depends only on the fact that we consider t different markers,
not which one we consider, so we immediately get

A Tmgre-r = ] T (16)
k=1 k=1

Moreover, the product is 1 if we have an even number of markers, —1 if we have an
odd one. Therefore, if we indicate with p; (t) the probability of finding [ markers on ¢
consecutive edges, we get

t ¢
JTme =D D't (17)
k=1 1=0
Now we have that an edge has probability u of having a marker, hence if t < N
t _
o) = ()t (18)
We can then conclude
¢ t ¢ ¢
AT = X 00 = X 0 ()l =~ = =20 (19)
k=1 1=0
We finally get

N t
(A1) = Z<<H mk> YX; (0) = (1—2p2)' A (0). (20)



It is easy to see that A (¢) is periodic, indeed A (2N) = A (0) (every ball encounters every
marker twice). Furthermore, 2N is the period if the number of marker is odd, while N is
if the number of markers is even.
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