

Kinetic Equations

Solution to the Exercises

– 22.04.2021 –

Teachers: Prof. Chiara Saffirio, Dr. Théophile Dolmaire

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let $\varphi : \mathbb{R}^3 \rightarrow \mathbb{R}$ be a continuous function. Assume that φ is **collision invariant**, i.e.

$$\varphi(v') + \varphi(v'_*) = \varphi(v) + \varphi(v_*) \quad (1)$$

for all $v, v_* \in \mathbb{R}^3$, $\omega \in \mathbb{S}^2$, and with v' and v'_* defined as:

$$\begin{cases} v' = v + (v_* - v) \cdot \omega \omega, \\ v'_* = v_* - (v_* - v) \cdot \omega \omega. \end{cases} \quad (2)$$

- Assume additionally that φ vanishes on $(0, 0, 0)$, $(1, 0, 0)$, $(0, 1, 0)$, $(0, 0, 1)$ and $(-1, 0, 0)$. Prove that φ is zero on \mathbb{Z}^3 .
- Under the same assumption of the previous point, prove that actually φ is zero on \mathbb{R}^3 .

Hint: Denote $a = (1/2, 1/2, 0)$, $b = (1/2, -1/2, 0)$, $c = (-1/2, -1/2, 0)$ and $d = (-1/2, 1/2, 0)$, what can be said about $\varphi(a) + \varphi(b)$, $\varphi(b) + \varphi(c)$, $\varphi(c) + \varphi(d)$, $\varphi(d) + \varphi(a)$? What about $\varphi(a) + \varphi(c)$? Iterate this idea and use continuity to conclude.

- Consider now a generic continuous φ which is collision invariant. Use the previous point to prove that there exist $a, c \in \mathbb{R}$ and $b \in \mathbb{R}^3$ such that

$$\varphi(v) = a|v|^2 + b \cdot v + c, \quad (3)$$

for any $v \in \mathbb{R}^3$.

Remark. Notice that despite the similarities with the result presented in class, the final result is here achieved under much less regularity assumptions.

Proof. Let $e_1 := (1, 0, 0)$, $e_2 := (0, 1, 0)$ and $e_3 := (0, 0, 3)$. Initially assume that $\varphi : \mathbb{R}^3 \rightarrow \mathbb{R}$, is collision invariant and vanishes on $0, e_1, e_2, e_3, -e_1$.

Consider the set $\Lambda := \{v \in \mathbb{R}^3 \mid \varphi(v) = 0\}$. By hypotheses $0, e_1, e_2, e_3, -e_1 \in \Lambda$. In the first part we prove that $\mathbb{Z}^3 \subseteq \Lambda$.

Step 1: Recall that we saw in class that the middle point between v and v_* and the middle point between v' and v'_* coincide. We will indicate that point as v_M in the following of the proof. Moreover we have that $|v - v_*| = |v' - v'_*|$. As we discussed in class, any value of ω is associated to one and only one pair v', v'_* such that the middle point coincides with v_M and $|v - v_*| = |v' - v'_*|$. We will use this geometric characterization to complete our proof.

Step 2: We first prove that $e_1 + e_2 \in \Lambda$. Indeed we have that if $v = e_1$, $v_* = e_2$, $v' = 0$ and $v'_* = e_1 + e_2$ we have $v + v_* = e_1 + e_2 = v' + v'_*$; on the other hand $|v - v_*| = |e_1 - e_2| = \sqrt{2} = |e_1 + e_2| = |v' - v'_*|$. This means that $\varphi(v'_*) = \varphi(v) + \varphi(v_*) - \varphi(v') = 0$ and therefore $e_1 + e_2 \in \Lambda$. More in general, if we prove that v , v_* , $v' \in \Lambda$, then $v'_* \in \Lambda$.

Step 3: Next, consider $v = -e_1$, $v_* = e_1$, $v' = e_2$ and $v'_* = -e_2$. We get $v + v_* = 0$ and $v' + v'_* = 0$, while at the same time $|v - v_*| = 2 = |v' - v'_*|$. Therefore $v'_* = -e_2 \in \Lambda$.

Analogously $v = e_1$, $v_* = -e_2$, $v' = 0$ and $v'_* = e_1 - e_2$. We get $v + v_* = e_1 - e_2$ and $v' + v'_* = e_1 - e_2$, while at the same time $|v - v_*| = \sqrt{2} = |v' - v'_*|$. Therefore $v'_* = e_1 - e_2 \in \Lambda$.

Step 4: Given that the crucial ideas are the one introduced in the previous points, we just sketch the next steps. From the fact that $-e_1$, e_1 , $e_1 - e_2 \in \Lambda$ then $-e_1 - e_2 \in \Lambda$; from the fact that $-e_1$, e_1 , $e_1 + e_2 \in \Lambda$ then $-e_1 + e_2 \in \Lambda$.

Now, using iteratively that from the fact that $(n-1)e_1$, $ne_1 + e_2$, $ne_1 - e_2 \in \Lambda$ we get $(n+1)e_1 \in \Lambda$ and that from the fact that $(n-1)e_1$, $(n-1)e_1 \pm e_2$, $(n+1)e_1 \in \Lambda$ we get $(n+1)e_1 \pm e_2 \in \Lambda$ we get $\{ne_1 + me_2 \mid n \in \mathbb{N}, m \in \{0, \pm 1\}\} \subseteq \Lambda$.

Proceeding similarly in all directions this implies that $\{ne_1 + me_2 \mid n, m \in \mathbb{Z}\} \subseteq \Lambda$.

Step 5: Consider now $v = e_1$, $v_* = -e_1$, $v' = e_3$ and $v'_* = -e_3$. We get $v + v_* = 0 = v' + v'_*$ and $|v - v_*| = 2 = |v' - v'_*|$. Therefore $v'_* = -e_3 \in \Lambda$.

Proceeding as before we first deduce that $e_3 \pm e_1$, $-e_3 \pm e_1$, $e_3 \pm e_2$, $-e_3 \pm e_2 \in \Lambda$. This implies that $\{nv_1 + mv_2 \mid n, m \in \mathbb{Z}, v_1, v_2 \in \{e_1, e_2, e_3\}\}$.

Step 6: Finally from the previous step we deduce that $\mathbb{Z}^3 \subseteq \Lambda$.

For the next part, consider a , b , c , d as defined in the hint. Consider $v = a = \frac{1}{2}e_1 + \frac{1}{2}e_2$, $v_* = b = \frac{1}{2}e_1 - \frac{1}{2}e_2$, $v' = 0$, $v'_* = e_1$; we then get $v + v_* = e_1 = v' + v'_*$ and that $|v - v_*| = 1 = |v' - v'_*|$. This implies that $\varphi(a) + \varphi(b) = \varphi(0) + \varphi(e_1) = 0$. As a consequence $\varphi(a) = -\varphi(b)$. Proceeding analogously we get $\varphi(b) = -\varphi(c) = \varphi(d)$.

Moreover, consider $v = a$, $v_* = c = -\frac{1}{2}e_1 - \frac{1}{2}e_2$, $v' = b$ and $v'_* = -\frac{1}{2}e_1 + \frac{1}{2}e_2$. We get $v + v_* = 0 = v' + v'_*$ and that $|v - v_*| = \sqrt{2} = |v' - v'_*|$. As a consequence we get $\varphi(a) + \varphi(c) = \varphi(b) + \varphi(d)$ and therefore $\varphi(a) = \varphi(b) = \varphi(c) = \varphi(d) = 0$. This allows us to conclude that from the fact that $\{ne_1 + me_2 \mid n, m \in \mathbb{Z}\} \subseteq \Lambda$ we get $\{ne_1 + me_2 \mid n, m \in \frac{1}{2}\mathbb{Z}\} \subseteq \Lambda$. Iterating this we get that $\{ne_1 + me_2 \mid \exists k \in \mathbb{N}, n, m \in \frac{1}{2^k}\mathbb{Z}\} \subseteq \Lambda$. Finally by continuity we get that $\{xe_1 + ye_2 \mid x, y \in \mathbb{R}\} \subseteq \Lambda$ proceeding similarly in all directions we can conclude that $\Lambda = \mathbb{R}^3$ and therefore $\varphi = 0$.

For the final point, consider a generic continuous collision invariant function φ and define the function $\tilde{\varphi}(v) := a|v|^2 + b \cdot v + c$ such that $\tilde{\varphi} = \varphi$ on the points 0 , $\pm e_1$, e_2 , e_3 . This correspond to five equations with five unknown; there exist then a , $c \in \mathbb{R}$, $b \in \mathbb{R}^3$ such that $\varphi - \tilde{\varphi}$ vanishes on 0 , $\pm e_1$, e_2 , e_3 , which is a continuous collision invariant. From the previous points now $\varphi - \tilde{\varphi} = 0$ and this implies the conclusion.

□

Exercise 2

Let (X, Σ, μ) be a finite measure space. Let $f : X \rightarrow X$ a **measure-preserving transformation**, i.e., a mapping such that for any $A \in \Sigma$ we have $\mu(f^{-1}(A)) = \mu(A)$. For any $x \in X$ and $A \in \Sigma$, we say that x is **recurrent with respect to A** if $|\{k \in \mathbb{N} \mid f^k(x) \in A\}| = +\infty$, where $f^{k+1}(x) := f(f^k(x))$.

Prove the **Poincaré recurrence Theorem**, i.e., prove that for any measurable set $A \in \Sigma$ almost every point of A is recurrent with respect to A .

Discuss then how this would seem to contradict the H-theorem (this is the so-called Zermelo's Paradox).

Hint: Consider the family of sets $U_p := \bigcup_{k \geq p} f^{-k}(A)$. Can we express the set of non-recurrent points in term of $\{U_p\}_{p \in \mathbb{N}}$?

Proof. As in the hint define for any $p \in \mathbb{N}$ the set $U_p := \bigcup_{k \geq p} f^{-k}(A)$; clearly $f^{-1}(U_p) = U_{p+1}$ and therefore $\mu(U_p) = \mu(U_0) \geq \mu(A)$. Moreover we get $U_p = f^{-p}(U_0)$. Consider now the set of all the points in A which are not recurrent with respect to A ; we get

$$\{x \in A \mid x \text{ is not recurrent w.r.t. } A\} = \{x \in A \mid |\{n \in \mathbb{N} \mid f^n(x) \in A\}| < +\infty\} \quad (4)$$

$$= A \setminus \{x \in A \mid |\{n \in \mathbb{N} \mid f^n(x) \in A\}| = +\infty\} \quad (5)$$

$$= A \setminus \left(\bigcap_{p \in \mathbb{N}} (A \cap U_p) \right) = A \setminus \bigcap_{p \in \mathbb{N}} U_p \quad (6)$$

$$= \bigcup_{p \in \mathbb{N}} (A \setminus U_p). \quad (7)$$

From the definition we get $A \subseteq U_0$ and therefore $A \setminus U_p \subseteq U_0 \setminus U_p = U_0 \setminus f^{-p}(U_0)$. Given that $f^{-p}(U_0) \subseteq U_0$ we get

$$0 \leq \mu(A \setminus U_p) \leq \mu(U_0 \setminus f^{-p}(U_0)) = \mu(U_0) - \mu(f^{-p}(U_0)) = \mu(U_0) - \mu(U_0) = 0. \quad (8)$$

Therefore we get $\mu(A \setminus U_p)$ which implies $\mu(\{x \in A \mid x \text{ is not recurrent w.r.t. } A\}) = 0$.

□

Exercise 3

We will now study a toy model, useful to understand the Zermelo's Paradox.

Consider the following setting. We have N points on a ring, with N a large integer number. At every point there is a ball, that can be either white or black. Between every couple of points there is an edge that can contain or not contain a marker. We consider that the system evolves in discrete times according to the following rule: at each step, the balls rotate of one position (the ball in position 1 goes to position 2, 2 to 3 and so on, and finally the ball in position N goes to position 1). If the ball encounters a marker on the edge, it changes its color.

- Let $W(t)$ the total number of white balls and $B(t)$ the total number of black balls at time t . Let $w(t)$ (and $b(t)$ respectively) the number of white (and respectively black) balls that will cross a marker at the next step.

Let $\Delta(t) := B(t) - W(t)$. Describe $\Delta(t+1)$ in terms of $\Delta(t)$.

Let in addition μ be the fraction of markers over the total number of edges. Assume moreover that $\frac{w(t)}{W(t)} = \frac{b(t)}{B(t)} = \mu$ (this corresponds to the Stosszahlansatz). Find an explicit formula for $\Delta(t)$ in terms of $\Delta(0)$ and μ .

- Denote with $X_j(t)$ the color of the ball at position j at time t , where $X_j(t) = 1$ if the ball is black and $X_j(t) = -1$ if the ball is white. Denote with m_j the fact that a marker is or is not on the edge between position j and position $j+1$, where $m_j = 1$ if there is no marker (and the ball does not change colour) while $m_j = -1$ if there is a marker (and the ball does change colour).

Describe $\Delta(t)$ in terms of $\{X_j(0)\}_{j=1}^N$ and $\{m_j\}_{j=1}^N$.

- Suppose now that every edge has a probability $0 \leq \mu \leq 1$ of having a marker. Denote with $\langle \cdot \rangle$ the expectation over all the possible configurations of markers, meaning that if M is the set of all the possible configurations and we denote with $m = \{m_j\}_{j=1}^N$ one such configuration, for $f : M \rightarrow \mathbb{R}$, we define

$$\langle f \rangle := \frac{1}{|M|} \sum_{m \in M} f(m). \quad (9)$$

Given that for any $t > 0$ the value $\Delta(t)$ depends on the configuration of markers on the edges, we can calculate its expectation.

Prove that for any $t < N$, $\langle \Delta(t) \rangle = (1 - 2\mu)^t \Delta(0)$.

- Discuss the link between the quantity we just obtained and the H-theorem for large values of N .
- Notice that the evolution of the system is reversible, that $\Delta(t)$ is periodic and find the period. Discuss how this solves the Zermelo's Paradox.

Proof. First of all, we get that the number of black balls at time $t+1$ is given adding the number of white balls that cross a marker to become black and subtracting the number of black balls that cross a marker to become white to the number of black balls at time t , i.e., $B(t+1) = B(t) - b(t) + w(t)$. Similarly, for the white balls we get $W(t+1) = W(t) - w(t) + b(t)$. Therefore we get

$$\Delta(t+1) = B(t+1) - W(t+1) = B(t) - b(t) + w(t) - (W(t) - w(t) + b(t)) \quad (10)$$

$$= \Delta(t) - 2(b(t) - w(t)). \quad (11)$$

If we now assume that $\frac{w(t)}{W(t)} = \frac{b(t)}{B(t)} = \mu$ we get

$$\Delta(t+1) = \Delta(t) - 2(b(t) - w(t)) = \Delta(t) - 2\mu(B(t) - W(t)) = (1 - 2\mu)\Delta(t). \quad (12)$$

Iterating the previous formula we get $\Delta(t) = (1 - 2\mu)^t \Delta(0)$.

Now, define $X_j(t)$ as in the text. We get that $\Delta(t) = \sum_{j=1}^N X_j(t)$. Also, by definition of $\{X_j(t)\}_{j=1}^N$ and $\{m_j\}_{j=1}^N$ we get $X_{j+1}(t+1) = m_j X_j(t)$ for all $j > 0$, while $X_1(t+1) = m_N X_N(t)$. Extend now the definition of m_j and X_j for any $j \in \mathbb{Z}$ periodically. In this way we get that iterating the formula for $X_j(t+1)$ we get

$$X_j(t) = \left(\prod_{k=j-t}^{j-1} m_k \right) X_{j-t}(0) = \left(\prod_{k=1}^t m_{j-k} \right) X_{j-t}(0). \quad (13)$$

As a consequence, this implies

$$\Delta(t) = \sum_{j=1}^N \left(\prod_{k=1}^t m_{j-k} \right) X_{j-t}(0) = \sum_{j=1}^N \left(\prod_{k=1}^t m_{j+t-k} \right) X_j(0). \quad (14)$$

First notice that $X_j(0)$ does not depend on $\{m_j\}_{j=1}^N$, therefore

$$\langle \Delta(t) \rangle = \sum_{j=1}^N \left\langle \left(\prod_{k=1}^t m_{j+t-k} \right) \right\rangle X_j(0). \quad (15)$$

We can now explicitly calculate the last term; indeed first of all given that we are looking at an average, the product depends only on the fact that we consider t different markers, not which one we consider, so we immediately get

$$\left\langle \prod_{k=1}^t m_{j+t-k} \right\rangle = \left\langle \prod_{k=1}^t m_k \right\rangle. \quad (16)$$

Moreover, the product is 1 if we have an even number of markers, -1 if we have an odd one. Therefore, if we indicate with $p_l(t)$ the probability of finding l markers on t consecutive edges, we get

$$\left\langle \prod_{k=1}^t m_k \right\rangle = \sum_{l=0}^t (-1)^l p_l(t). \quad (17)$$

Now we have that an edge has probability μ of having a marker, hence if $t < N$

$$p_l(t) = \binom{t}{l} \mu^l (1-\mu)^{t-l}. \quad (18)$$

We can then conclude

$$\left\langle \prod_{k=1}^t m_{j+t-k} \right\rangle = \sum_{l=0}^t (-1)^l p_l(t) = \sum_{l=0}^t (-1)^l \binom{t}{l} \mu^l (1-\mu)^{t-l} = (1-2\mu)^t. \quad (19)$$

We finally get

$$\langle \Delta(t) \rangle = \sum_{j=1}^N \left\langle \left(\prod_{k=1}^t m_{j+t-k} \right) \right\rangle X_j(0) = (1-2\mu)^t \Delta(0). \quad (20)$$

It is easy to see that $\Delta(t)$ is periodic, indeed $\Delta(2N) = \Delta(0)$ (every ball encounters every marker twice). Furthermore, $2N$ is the period if the number of marker is odd, while N is if the number of markers is even.

□